Big Ideas Math: Agebra 2

Chapter Summary

Learning Goals

Classify direct and inverse variation.

Write inverse variation equations.

Graph simple rational functions.

Translate simple rational functions.

Graph other rational functions.

Simplify rational expressions.

Multiply rational expressions.

Divide rational expressions.
Add or subtract rational expressions.

Rewrite rational expressions and graph the related function.

Simplify complex fractions.
Solve rational equations by cross multiplying.

Solve rational equations by using the least common denominator.

Use inverses of functions.

Core Vocabulary

Two variables x and y show inverse variation when $\mathrm{y}=\frac{a}{x}$, where $a \neq 0$.

The constant a in the inverse variation equation $y=\frac{a}{x}$, where $a \neq 0$ is the constant of variation.

A rational function has

the form $f(x)=\frac{p(x)}{q(x)}$, where
$p(x)$ and $q(x)$ are polynomials and $q(x) \neq 0$.

A rational expression is a fraction whose numerator and denominator are nonzero polynomials.

A rational expression is in simplified form when its numerator and denominator have no common factors (other than ± 1).

A complex fraction is a fraction that contains a fraction in its numerator or denominator.

Cross multiplying is a method used to solve a rational equation when each side of the equation is a single rational expression.

Chapter 7: Rational Functions

Core Concept

Graphing Translations of Simple Rational Functions

To graph a rational function of the form $y=\frac{a}{x-h}+k$, follow these steps:
Step 1 Draw the asymptotes $x=h$ and $y=k$.
Step 2 Plot points to the left and to the right of the vertical asymptote.

Step 3 Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

Simplifying Rational Expressions

Let a, b, and c be expressions with $b \neq 0$ and $c \neq 0$.
Property $\quad \frac{a \ell}{b \ell}=\frac{a}{b} \quad$ Divide out common factor c.

Multiplying Rational Expressions

Let a, b, c, and d be expressions with $b \neq 0$ and $d \neq 0$.
Property $\quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} \quad$ Simplify $\frac{a c}{b d}$ if possible.

Dividing Rational Expressions

Let a, b, c, and d be expressions with $b \neq 0, c \neq 0$, and $d \neq 0$.
Property $\quad \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c} \quad$ Simplify $\frac{a d}{b c}$ if possible.

Adding or Subtracting with Like Denominators

Let a, b, and c be expressions with $c \neq 0$.

Addition

$\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$

Adding or Subtracting with Unlike Denominators

Inverse Variation

- Two variables x and y show inverse variation when they are related as follows: $y=\frac{a}{x}, a \neq 0$.
- The constant a is the constant of variation, and y is said to vary inversely with x.

Simplifying Complex Fractions

Method 1	If necessary, simplify the numerator and denominator by writing each as a single fraction. Then divide by multiplying the numerator by the reciprocal of the denominator.
Method 2	Multiply the numerator and the denominator by the LCD of every fraction in the numerator and denominator. Then simplify.

Let a, b, c, and d be expressions with $c \neq 0$ and $d \neq 0$.

Addition Subtraction

$\frac{a}{c}+\frac{b}{c}=\frac{a d}{c d}+\frac{b c}{c d}=\frac{a d+b c}{c d}$

Additional Review

- Writing Inverse Variation Equations, p. 361
- Solving Rational Equations by Cross Multiplying, p. 392
- Solving Rational Equations by Using the Least Common Denominator, p. 393
- Using Inverses of Functions, p. 395

Game

- Four in a Row - A Trick for You - Make My Team - Equation Tic-Tac-Toe

These are available online in the Game Closet at www.bigideasmath.com.

What's the Point?

The STEM Videos available online show ways to use mathematics in real-life situations.

The Chapter 7: 3D Printing STEM Video is available online at www.bigideasmath.com.

